

Plainville Electrical Products Company

State of Emissions

New Regulations

- NOx Reduction Theory
- NOx Reduction Strategies

Seaworthy Systems, Inc.

- Founded in 1973
- Principal Founders Came From P&W / TP&M
- Conducted Numerous Studies for the Maritime Administration Regarding Gas Turbine Installations
- Conducted Numerous Studies for Emissions Mitigation from Fossil Fuel Power Generation

Seaworthy Systems, Inc.

- Developed HPWI Skid with PEPCO in 1995
 - > 60 systems in operation
- Specialty Fuel Filtration & Forwarding Systems for Gas Turbines
- Specialty Lube Oil Filtration System for Varnish removal (esp. applicable for Frame 5/7)
- Gas Turbine Inlet Air Fogging System

	Regulations	
Connecticut	Memorandum of Understanding Among the States of the Ozone Transport Commission Concerning the Incorporation of High Electrical Demand Day Emission Reduction Strategies into Ozone Attainment State Implementation Planning	
Delaware District of Columbia	Whereas the Ozone Transport Commission (OTC) was established under Sections 176A and 184 of the federal Clean Air Act (CAA) to ensure the development and implementation of regional strategies to reduce ground-level ozone to healthful levels; and	
Maine Maryland	Whereas the adverse health effects of ground-level ozone are well documented, and in spite of significant reductions of ozone precursor emissions achieved to date as a result of our NOx MOU of 1994, the US	
Massachusetts	Envi expe the i	
New Hampshire	The OTC States identified in the following table of	commit to pursue
New Jersey	the following reductions in NOx emissions assoc	
New York	thes pollu	e 2009 ozone
	season or as soon as feasible thereafter, but no	acci ci aci 2012.

HEDD NOx Differential

	Total NOx	Total NOx	Increased	Percent
STATE	6/4/2005	7/26/2005	Tons of NOx	Change
MD	84	218	134	160
NY	110	377	267	243
PA	233	404	171	73
СТ	10	54	44	440
MA	47	74	27	57
DE	14	58	44	314
NJ	52	163	111	213
TOTAL	550	1348	798	145

Regulations

Memorandum of Understanding Among the States of the Ozone Transport Commission Concerning the Incorporation of High Electrical Demand Day Emission Reduction Strategies into Ozone Attainment State Implementation Planning

Connecticut

Delaware

District of Columbia

Maine

Maryland

Massachusetts

New Hampshire

New Jersey

have

New York

Furthermore, that such reduction commitment will be included in each of the several states' 8-hour ozone attainment State Implementation Plan submissions to EPA due in June 2007; and

Seaworthy Industrial Systems, Inc.

these

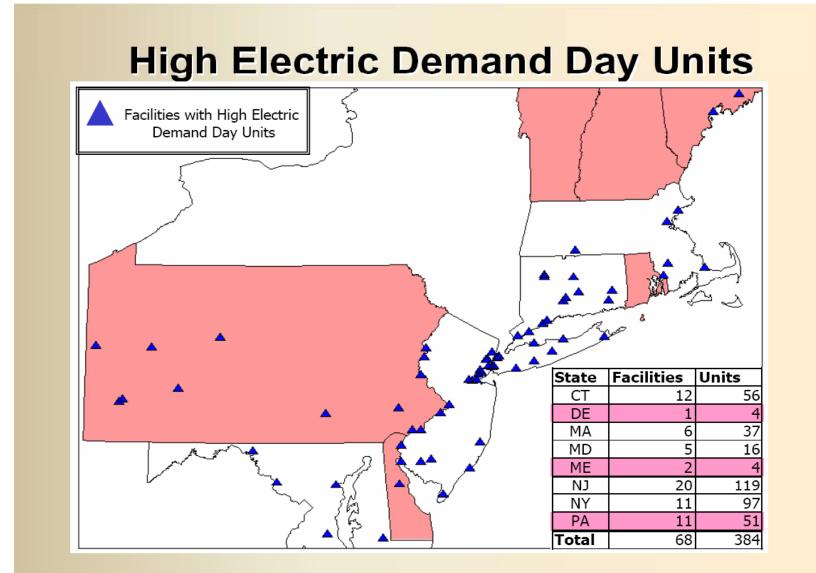
polluti

Part of the Rolls-Royce Group

Whereas the Ozone Transport Commission (OTC) was established under Sections 176A and 184 of the federal Clean Air Act (CAA) to ensure the devel

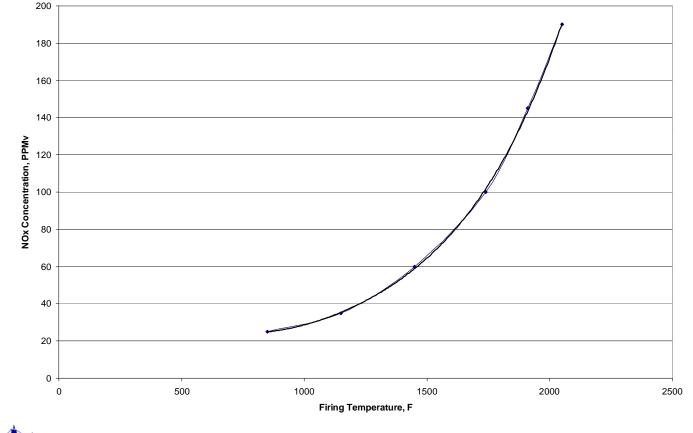
State	NOx (tons per day)	Percent Reduction from HEDD Units
 СТ	11.7	25%
DE	7.3	20%
MD	23.5	32%
NJ	19.8	28%
NY	50.8	27%
PA	21.8	32%
Total	134.9	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OZONE TRANSPORT COMMISSION	
Connecticut	
Delaware	
District of Columbia	
Maine	(2) For
Maryland	a.
Massachusetts	2.2
New Hampshire	orre
New Jersey	
New York	
18 18 N	


Regulations

Model Rule for Additional Nitrogen Oxides (NOx) Control Measures

) For a simple cycle combustion turbine: a. For a gas-fired turbine without oil back-up, 2.2 pounds of NOx per MWh (55 ppmvd, orrected to 15% O2); For an oil-fired turbine, 3.0 pounds of NOx per MWh (75 ppmvd, corrected to 15% O2), and



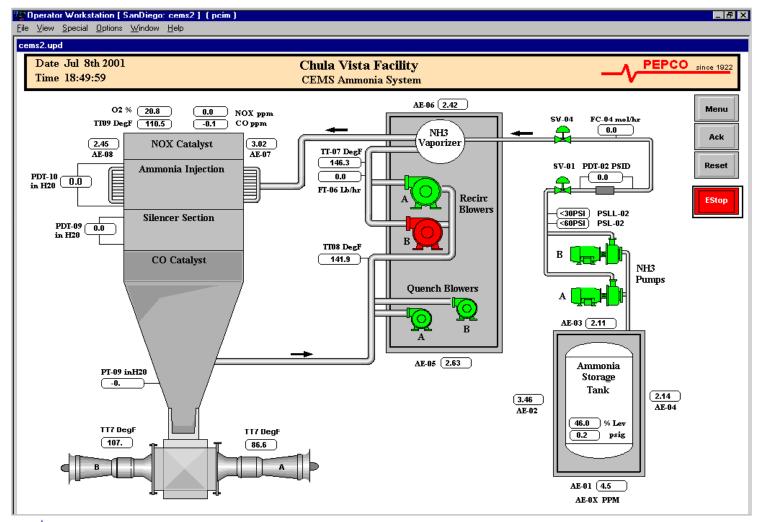
NOx Production vs. Firing Temp

NOx Concentration

NOx Reduction Strategies

- Remove NOx from exhaust after production
- Reduce NOx production
- Combination of Removal & Reduction

NOx Removal


SCR System

- Uses Ammonia/Urea to remove NOx
- Pros
 - Can remove NOx to very low levels
 - Does NOT increase CO levels
- Cons
 - Very Large space requirements
 - Requires a separate Ammonia Delivery system
 - Requires an Ammonia/Urea Storage Tank
 - Requires Ammonia/Urea Resupply

SCR Screen



NOx Removal

SCR System Installation

• Dry Low NOx (DLN)

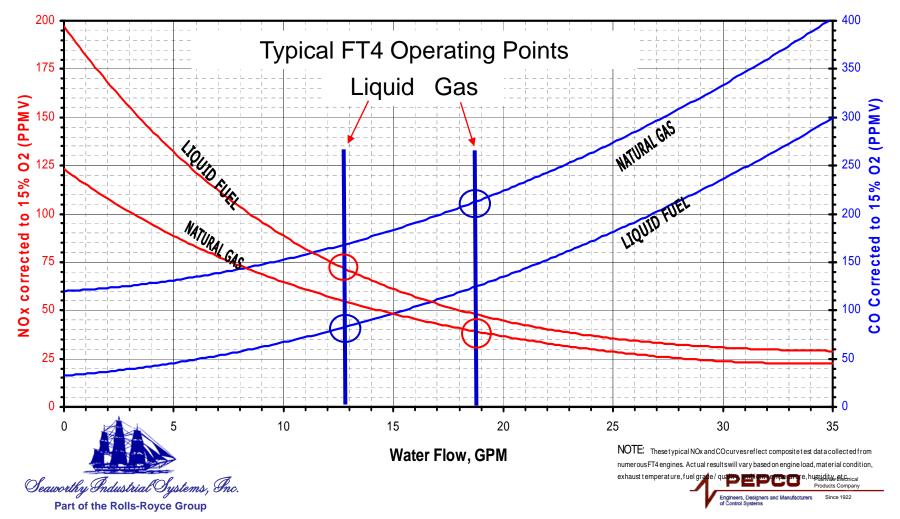
No viable solution has yet been engineered for FT4s

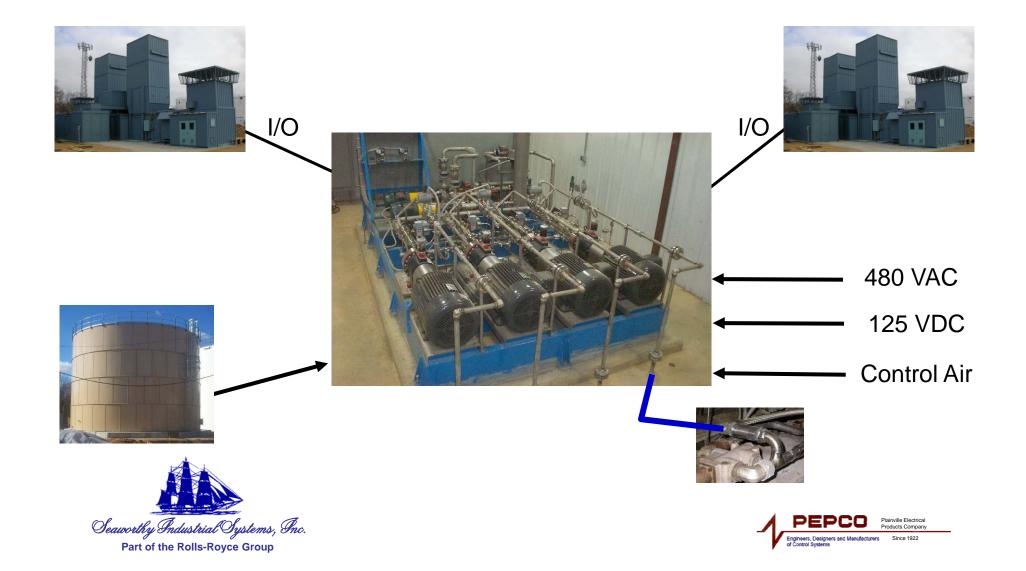
• High Pressure Water Injection (HPWI)

Injects water into burner section to reduce peak combustion temperatures and reduce NOx

High Pressure Water Injection (HPWI)

- PROS
 - PROVEN technology
 - Simple Installation / packaged system
 - Small installation footprint
 - Low capital cost
 - Low Operations & Maintenance Costs
 - Only consumable is DI water and filters
 - Power increase (~7%) due to increased mass flow
 - Reduces Opacity


- High Pressure Water Injection (HPWI)
- CONS
 - Increases CO
 - NOTE: CO for Liquid fuel w/ HPWI is < CO for Gas w/ No HPWI
 - Need reliable source for DI water
 - Large Tank, or
 - Smaller tank and on-site DI Water Processing System
 - (Requires about 20 GPM per engine)
 - If you have a Gas only FT4, requires dual fuel manifolds
 - Water flow limited by fuel system nozzle capacity



NOx and CO vs. WATER INJECTION

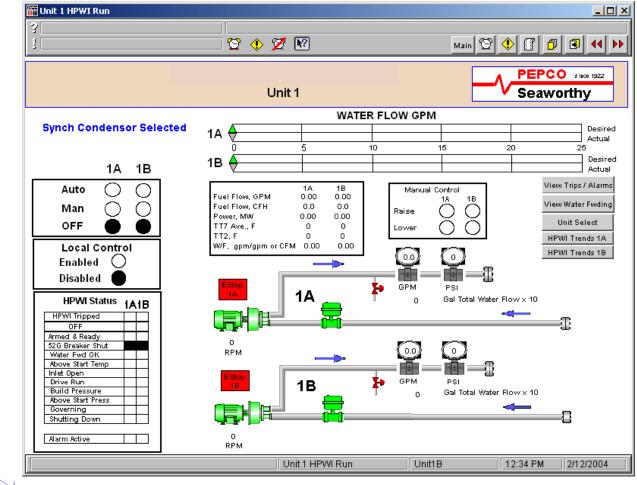
FT4A-9 BASE LOAD OPERATION

Packaged HPWI System

Seaworthy/PEPCO Packaged HPWI

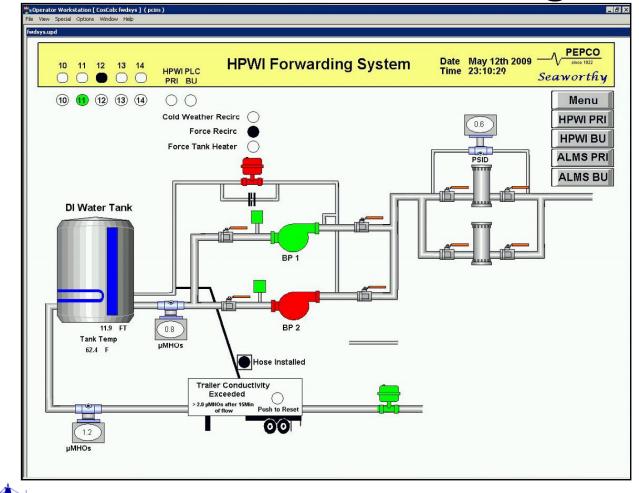
- Uses VFDs and Positive Displacement Pumps
 - Very fine water flow control
 - Smooth water flow change transitions
 - Lower pump discharge pressures
- Designed for minimal site interface requirements
- Interfaces with OEM and retrofitted control systems
- All wetted parts stainless steel
- Welded pipe & flange construction designed for strength & maintainability
- 100% factory tested Typical Twin Pak commissioning one (1) day.

ROI (Return On Investment)


HPWI may pay for itself!

- Reserve Market Pricing (CT typical) of \$14,000/MW/month
- Nominal 7% power increase on a 20MW unit is 1.4 MW
- Therefore, 1.4 MW x \$14,000/MW/Mo x 12 mo = \$235,200 / year income

Main Screen



Seaworthy Industrial Systems, Inc.

Part of the Rolls-Royce Group

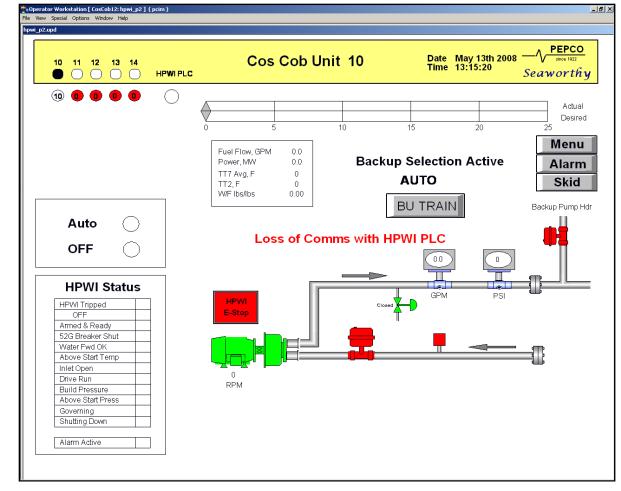
Water Forwarding

Seaworthy Industrial Systems, Inc. Part of the Rolls-Royce Group

Alarms & Trips

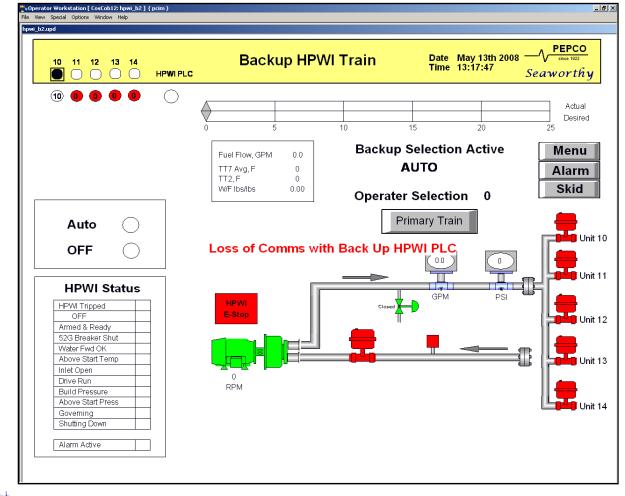
			ଷ୍ର 🚸 💋	N ?		Main	<u>ଅ</u> ଏ		1
			Unit	1			-⁄	_	worthy
Trips	1A -	18			Γ	Unit 1 Alarms	1A	1B	Unit 1 HPWI
86E Tripped			Reset 1A	Reset 1B		Water Flow HI			
86M Tripped	$ \square$		Reset IA	Reservo		Water Flow LO			View Water Fw
Drive Fault						Hi Press >820#			
Emergency Stop	$ \vdash $					MW Loss			Unit Select
HMI EStop	$ \square$					Fuel Flow Loss Liqu	id		onit select
Hi Press Trip >850#						Fuel Flow Loss Gas			HPWI Trends 1
Fail to build Press								_	AP WI Trends 1
Water Flow LO LO									HPWI Trends 1
Water Flow HI HI						Common Alarms			
Inlet VIv Fail to Open	\square				Ι,				
Both Fwd Pmps Failed						Inlet Filter DP >15#			
Loss of 5psi Inlet Press						Loss of DP Input			
Hi Conductance						DI Tank Level Lo			
Inlet VIv Shut in Run						DI Tank Level Lo Lo			
Loss of Press in Run						Loss of Tank Lvi inp	ut		
Skid Comm Loss						Inlet Conductance H	li		
TT2 Loss						Loss of Cond Input			
TT7 Loss	$ \vdash $					1st Fwding Pmp Fail	ure		
Water Flow Input Loss	\vdash					Shutdown Override			
Water Press Input Loss					1'				
Fuel Flow Loss									
			I		L				l
				wit 4 LIDVA/I Alex		and Trips U1 HPWI Alar	ma 4	2:21 PM	1 2/12/2004
				nit i HPWi Alar	mis	and mpsj.or_HPWI_Alar	<u>ms j 1</u>	Z.ZTPN	1 2112/2004

Seaworthy Industrial Systems, Inc. Part of the Rolls-Royce Group


Shutdown Override

3	🖻 🔶 💋 🕅	Main 🔯 🔶 🗊 🗗 🛃 4
	Unit 1 Selection	
	Local Control Enable O Disable ●	Unit Run View Trips / Alarm View Water Fwdin HPWI Trends 1A HPWI Trends 1B
1A HPWI Unit Shutdown Override		1B HPWI Unit Shutdown Override
	Unit1 Select	∬ Unit1 Select 12:26 PM 2/12/200

Seaworthy Industrial Systems, Inc. Part of the Rolls-Royce Group


Redundant HPWI System

Redundant HPWI System

Seaworthy/PEPCO Packaged HPWI

The Bottom Line

- Simple, very effective design
- Very Low maintenance
 - No mechanical throttling / no wear
 - Field proven Industrial components
- Cost effective

Combination Removal/Reduction

Many SCR systems use a reduction technology, such as HPWI, to reduce the more expensive SCR requirements and reach lower emissions limits.

Contact Information:

Seaworthy Industrial Systems, Inc. 22 Main St. Centerbrook, CT 06409 Phone: (860) 767-3095 FAX: (860) 767-1263 Contact: Don Ricciuti / Matt Winkler Email: dricciuti@seaworthysys.com / mwinkler@seaworthysys.com

PEPCO (Plainville Electrical Products Co.)
435 Lake Ave.
Bristol, CT 06010
Phone: (860) 583-1144
FAX: (860) 583-1421
Contact: Mike Cohn / Joe Nalley
Email: <u>mike.cohn@pepco-ft4.com</u> / jnalley@pepco-ft4.com
Website: www.pepco-ft4.com

